Adaptive weighted-sum method for bi-objective optimization: Pareto front generation

نویسنده

  • I. Y. Kim
چکیده

This paper presents a new method that effectively determines a Pareto front for bi-objective optimization with potential application to multiple objectives. A traditional method for multiobjective optimization is the weighted-sum method, which seeks Pareto optimal solutions one by one by systematically changing the weights among the objective functions. Previous research has shown that this method often produces poorly distributed solutions along a Pareto front, and that it does not find Pareto optimal solutions in nonconvex regions. The proposed adaptive weighted sum method focuses on unexplored regions by changing the weights adaptively rather than by using a priori weight selections and by specifying additional inequality constraints. It is demonstrated that the adaptive weighted sum method produces well-distributed solutions, finds Pareto optimal solutions in non-convex regions, and neglects non-Pareto optimal solutions. This last point can be a potential liability of Normal Boundary Intersection, an otherwise successful multiobjective method, which is mainly caused by its reliance on equality constraints. The promise of this robust algorithm is demonstrated with two numerical examples and a simple structural optimization problem.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adaptive Weighted Sum Method for Multiobjective Optimization

This paper presents an adaptive weighted sum method for multiobjective optimization problems. The authors developed the bi-objective adaptive weighted sum method, which determines uniformly-spaced Pareto optimal solutions, finds solutions on non-convex regions, and neglects non-Pareto optimal solutions. However, the method could solve only problems with two objective functions. In this work, th...

متن کامل

Adaptive Weighted Sum Method for Bi-objective Optimization

This paper presents a new method that effectively determines a Pareto front for biobjective optimization with potential application to multiple objectives. A traditional method for multiobjective optimization is the weighted sum method, which seeks Pareto optimal solutions one by one by systematically changing the weights among the objective functions. Previous research has shown that this meth...

متن کامل

An effective method based on the angular constraint to detect Pareto points in bi-criteria optimization problems

The most important issue in multi-objective optimization problems is to determine the Pareto points along the Pareto frontier. If the optimization problem involves multiple conflicting objectives, the results obtained from the Pareto-optimality will have the trade-off solutions that shaping the Pareto frontier. Each of these solutions lies at the boundary of the Pareto frontier, such that the i...

متن کامل

Adaptive weighted sum method for multiobjective optimization: a new method for Pareto front generation

This paper presents an adaptive weighted sum (AWS) method for multiobjective optimization problems. The method extends the previously developed biobjective AWS method to problems with more than two objective functions. In the first phase, the usual weighted sum method is performed to approximate the Pareto surface quickly, and a mesh of Pareto front patches is identified. Each Pareto front patc...

متن کامل

A New Algorithm for Constructing the Pareto Front of Bi-objective Optimization Problems

Here, scalarization techniques for multi-objective optimization problems are addressed. A new scalarization approach, called unified Pascoletti-Serafini approach, is utilized and a new algorithm to construct the Pareto front of a given bi-objective optimization problem is formulated. It is shown that we can restrict the parameters of the scalarized problem. The computed efficient points provide...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005